Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data
نویسندگان
چکیده
With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models.
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کامل3D building roof reconstruction from airborne LiDAR point clouds: a framework based on a spatial database
Three-dimensional (3D) building models are essential for 3D Geographic Information Systems and play an important role in various urban management applications. Although several light detection and ranging (LiDAR) data-based reconstruction approaches have made significant advances toward the fully automatic generation of 3D building models, the process is still tedious and time-consuming, especi...
متن کاملModeling 3D Urban Areas from Aerial LiDAR Point Clouds: A Robust Roof Feature Based Reconstruction Approach
Urban reconstruction combining photogrammetry, remote sensing, computer vision, and computer graphic is an active research area with broad impact on several potential applications. In this work, a fast, completely automated approach to create 3D watertight building models from aerial LiDAR (Light Detection and Ranging) point clouds is presented. The developed method analyzes the scene content a...
متن کاملUse of Lidar Data to Constrain the Matching of Conjugate Features in Large-scale Imagery over Urban Areas
Reliable and accurate 3-D reconstruction of man-made objects, especially buildings, is essential for many applications that involve the use of digital 3-D city models. This paper aims at developing a semi-automated technique for building rooftop reconstruction employing a combination of large-scale aerial imagery and airborne laser scanning data acquired by Light Detection and Ranging (LiDAR) t...
متن کاملAutomatic Extraction and Regularization of Building Outlines from Airborne Lidar Point Clouds
Building outlines are needed for various applications like urban planning, 3D city modelling and updating cadaster. Their automatic reconstruction, e.g. from airborne laser scanning data, as regularized shapes is therefore of high relevance. Today’s airborne laser scanning technology can produce dense 3D point clouds with high accuracy, which makes it an eligible data source to reconstruct 2D b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017